A Statistical Evaluation of Atmosphere-Ocean General Circulation Models: Complexity vs. Simplicity

نویسندگان

  • Robert K. Kaufmann
  • David I. Stern
چکیده

The principal tools used to model future climate change are General Circulation Models which are deterministic high resolution bottom-up models of the global atmosphere-ocean system that require large amounts of supercomputer time to generate results. But are these models a cost-effective way of predicting future climate change at the global level? In this paper we use modern econometric techniques to evaluate the statistical adequacy of three general circulation models (GCMs) by testing three aspects of a GCM's ability to reconstruct the historical record for global surface temperature: (1) how well the GCMs track observed temperature; (2) are the residuals from GCM simulations random (white noise) or are they systematic (red noise or a stochastic trend); (3) what is the explanatory power of the GCMs compared to a simple alternative time series model, which assumes that temperature is a linear function of radiative forcing. The results indicate that three of the eight experiments considered fail to reconstruct temperature accurately; the GCM errors are either red noise processes or contain a systematic error, and the radiative forcing variable used to simulate the GCM's have considerable explanatory power relative to GCM simulations of global temperature. The GFDL model is superior to the other models considered. Three out of four Hadley Centre experiments also pass all the tests but show a poorer goodness of fit. The Max Planck model appears to perform poorly relative to the other two models. It does appear that there is a trade-off between the greater spatial detail and number of variables provided by the GCMs and more accurate predictions generated by simple time series models. This is similar to the debate in economics regarding the forecasting accuracy of large macroeconomic models versus simple time series models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Basic Effects of Atmosphere–Ocean Thermal Coupling on Midlatitude Variability*

Starting from the assumption that the atmosphere is the primary source of variability internal to the midlatitude atmosphere–ocean system on intraseasonal to interannual timescales, the authors construct a simple stochastically forced, one-dimensional, linear, coupled energy balance model. The coupled system is then dissected into partially coupled and uncoupled systems in order to quantify the...

متن کامل

Evaluating the performance of Atmosphere-Ocean Global Circulation Models (AOGCM) in simulating temperature variable in Ahwaz and Abadan stations

Climate changes caused by global warming has presented challenges to human society. Studying the Changes of climate variables in the future decades by using output data’s of Atmosphere-Ocean Global Circulation Models (AOGCM) is a way of perusing climate fluctuation in a region. In this study, the focus is on the AOGCM proceeds in simulating of variable temperature in Ahwaz and Abadan stations. ...

متن کامل

Evaluation of the performance of the CMIP5 General Circulation Models in predicting the Indian Ocean Monsoon precipitation over south Sistan and Baluchestan, using the past hydrological changes in the region

1-Introduction Climate change refers to any significant change in the existing mean climatic conditions within a certain time period (Jana and Majumder, 2010; Giorgi, 2006). Earth's climate change through history has happened (Nakicenovic et al., 2000; Bytnerowicz et al., 2007). 2-Materials and methods In this study, daily precipitation and daily maximum (Tmax) and daily minimum (Tmin) tempera...

متن کامل

The Atmosphere-Ocean General Circulation Model EMAC-MPIOM

The ECHAM/MESSy Atmospheric Chemistry (EMAC) model is coupled to the ocean general circulation model MPIOM using the Modular Earth Submodel System (MESSy) interface. MPIOM is operated as a MESSy submodel, thus the need of an external coupler is avoided. The coupling method is tested for different model configurations, proving to be very flexible in terms of parallel decomposition and very well ...

متن کامل

Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification

[1] Coupled atmosphere-ocean-land-sea ice climate models (AOGCMs) are often tuned using physical variables like temperature and precipitation with the goal of minimizing properties such as the root-mean-square error. As the community moves towards modeling the earth system, it is important to note that not all biases have equivalent impacts on biology. Bioclimatic classification systems provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004